
-AiBS i"S VAXELI EXPERIMENTATION- PROGRAMMING A REAL-TNE CLOCK
RAND INTERRUPT HANDL (U) CARUEGIE-MELLON UNIV
PITTSBURGH PA SOFTWdARE ENGINEERING INST M W BORGER

UNCLASSIFIED OCT 87 CHU/SEI-87-TR-29 ESD-TR-87-188 F/G 12/6 UL

EonEEEEEohmhhE
EhEE 1hEE11hhhhE
EhEmohhohohmhEE
EomhEmhohmhhhE

La 111&

MICROCOPY RESOLUTION *TEST "HART

~ 0 * Technical Report

wa CMUISEI-87-TR-29
ESD-TR-87-188

Software Engineering Institute

S il FJrILE COP

VAXELN Experimentatiod:
Programming a Real-lime Clock and
Interrupt Handling Using VAXELN Ada 1.1

LMark W. Borger

October 1987 DTIC
DEC 0 3 W

KS
A-N MW

.)b, i'sJ M /

*%

p//

'I-'m-•

,, S.' N

*.-

- - -- - - * , *,., . ,- t JC, ..t A.,-, rp. , .,.-.. - ,, ,, .,,,r-y'r, .,,f .-,-. .. -,, , r -

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

..0

Technical Report
CMU/SEI-87-TR-29

ESDITR-87-188

October 1987

VAXELN Experimentation:
Programming a Real-Time Clock and

Interrupt Handling Using VAXELN Ada 1.1

Mark W. Borger
Ada Embedded Systems Testbed Project

i ~Aoees ia ' "

NTIS ORA&Z
DTIC TAB E3
Unannounod 0
Justifioation

Distribution/

Availability Codoe

Avail and/or
Dist Speoial

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESDIXRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joirlt Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 0 1987 by the Software Engineering Institute

This document is availale through the Defense Technical hdformaicn Cente. DTIC provides ecoess to and transfer of
scientific and technical information for DoD personnel, D*O contraclors; anid potential contractrs, and other U.S. Government
agency personnel and Ohmk contractors. To obtain a copy. please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA. Cameron Station, Alexandria, VA 2230446145.
Copies of "h document ame also availale throgh the National Technical Information Services. For information on ordering.
please contact NTIS direc": National Technical Information Services, U.S. Department of Commerce, Springfield, VA 22161.

Ada is a registered trademark~ of the U.S. Department of Defense. Ada Joint Program Office. MicroVAx, VAx, VAXELN. and VMS
4 are trademaifs of Digital Equipment Corporation.

0 M
A L..

Table of Contents
U 1. Introduction I

1.1. Background I

2. VAXELN Kernel 3
2.1. Interrupt Handling 3
2.2. Synchronizing the Application with Intercepts 4
2.3. Data Sharing 5

3. KWV1 1-C Programmable Real-time Clock 7
3.1. Functional Description 7
3.2. Modes of Operation 7
3.3. Program Control 8

4. Ada Interface to KWV1 1-C Clock 11
4.1. Access to Device Registers 11
4.2. Ada Interrupt Service Routine 12
4.3. Device Interface 13
4.4. Using the Device Interface 15

4.4.1. Initializing 15
4.4.2. Controlling Operation 15
4.4.3. Time Measurements for External Events 16
4.4.4. Miscellaneous 17

5. Results 19
5.1. Technical Observations 19
5.2. Recommendations 21
5.3. Performance Measurements 21

Bibliography 25

Appendix A. KWV1 1_Clock Manager Source Code 27
A.a. KWVRegisterDefinitions Package Specification 27
A.b. KWVRegisterDefinitions Package Body 28
A.c. KWV1 1_ClockManager Package Specification 30
A.d. KWV11_ClockManager Package Body 32

Appendix B. Examples of KWV1 1-C Interface 47
B.a. Mode 0 Operation 47
B.b. Mode 1 Operation 49
B.c. Mode 2 Operation 51
B.d. Mode 3 Operation 53

CMU/SEI-87-TR-29

Appendix C. Software Measurement Techniques Using the KWV1 1 -C Interface 55
C.a. Technique #1 55
C.b. Technique #2 57

ii CMUISEI-87-TR-29

List of Figures
Figure 2-1: VAXELN Build Process 3
Figure 2-2: Associating a Device Interrupt with an ISR Via System Control Block 4

Entry
&Figure 2-3: VAXELN Signal/Wait Synchronization Model 5

CM/EI8-R2

II I i 1 11 1 1

VAXELN Experimentation:
Programming a Real-Time Clock and

Interrupt Handling Using VAXELN Ada 1.1

10 Abstract: This report describes the results of implementing an interrupt handler totally in
Ada for a MicroVAX II/AXELN 2.3 target system, the VAXELN 1.1 Ada compiler, and a
KWV1 1-C programmable real-time clock. It provides an overview of VAXELN interrupt hand-
lers and the operation of the real-time clock; discusses and demonstrates the use of
VAXELN kernel services to establish a link between the clock's interrupt and the starting
address of an interrupt service routine; presents an Ada package of interfaces to the
KWV1 1-C device; provides Ada source code examples demonstrating the use of this pack-
age; and presents relevant observations, recommendations, and measurement results.

* . 1. Introduction
,,e.." This paper provides the reader with technical information and observations, Ada source code, and the

results of our work in developing a real-time clock interface in Ada. The results are specific to a
MicroVAx IINAXELN 2.3 target system, the VAXELN 1.1 Ada compiler, and a KWV1 1-C programmable
real-time clock; and they provide answers for such questions as:

-How does one write an interrupt service routine (ISR) in Ada?
* How is an Ada ISR associated with the occurrence of a hardware device interrupt?

How can one control the operation of a KWVI -C programmable real-time clock using an
, Ada interface?

- ;1.1. Background

We originally intended to investigate programming alternatives available to a real-time application
developer for writing an interrupt handler, along with other appropriate Ada routines for a programm-
able real-time clock. Our approach was to code a simple Ada application which included:

* A main program that directs the real-time clock to generate interrupts at a frequency of
500 Hz, either through an existing interface or a newly developed one.

9 A simple application task scheduler that logs a message to an external text file when it is
called by the interrupt service routine.

* An interrupt service routine that handles time interrupts by invoking the application task
scheduler.

Within this framework, the main program is also responsible for opening and closing the log file,
-4 enabling and disabling the timer interrupts, establishing the connection between the clock's interrupt

.' .ivector and the service routine's starting address, and programming the clock rate. We originally
intended to analyze both the run-time costs and software engineering tradeoffs (e.g., time and space
performance, maintainability) associated with the Implementation alternatives; specifically, we

,vplanned to measure the interrupt handlers execution speed, object code size, and the associated
interrupt latency. However, we found only one alternative for implementing an interrupt handler totally

. ,S? .R-.

Z'v *,- CMU/SEI-87-TR-291

4'

in Ada for our target configuration and cross-compiler (VAXELN 2.3NAXELN Ada 1.1), to use VAXELN
kernel services to establish a link between the dock's Interrupt and the starting address of an inter-
rupt service routine. Thus, in'tead of following our original plan to examine various programming
alternatives, we conducted a detailed study of this single VAXELN Ada interrupt-handling technique.

2 CMU/SEI-87-TR-29

* --

2. VAXELN Kernel
In contrast to the general purpose, time-sharing VAxNMS operating system, VAXELN [DEC 85, DEC
86a] is a compact, more specialized run-time executive which supports the execution of application
programs on "bare" VAx (i.e., no operating system support present) target machines. In particular,
VAXELN Ada applications running on *bare' VAx target machines are supported entirely by the VAXELN

run-time executive (i.e., kernel), by VAXELN services (e.g., file server), and by the VAXELN Ada run-
time library. For an application system running under the VAXELN execution environment, these
modules must be linked with the application's object code to produce a system load module (see
Figure 2-1).

9..
Syte

.- Figure 2-1: VAXELN Build Process

" The VAXELN kernel is a layer of software between the VAX processor and application code. It pro-

Svides mechanisms to communicate between processes; to ontrol system resource usage; to create,

suspend, resume, and delete jobs and processes; to schedule jobs and processes; and to maintain
information about the user programs defined for a particular system. In a sense, the kernel is object-
based since it exports most of its services through a set of procedures and functions (i.e., operations)
which manipulate kernel objects (i.e., data structures). The predefined kernel objects include: AREA,
DEVICE, EVENT, MESSAGE, NAME, PORT, PROCESS, and SEMAPHORE. The operations de-
fined for these objects include creation, deletion, assignment, and comparison.

2.1. Interrupt Handling
The VAXELN kernel supports the notion of interrupt service routines (ISRs) for handling device inter-
rupts in software. Since an ISR is invoked directly by the VAXELN kernel each time the device
generates an interrupt, the ISR has the responsibility of taking appropriate action to service those
interrupts. A VAXELN kernel service, namely CREATEDEVICE (see Figure 2-2) establishes such a

connection between a hardware interrupt and an ISR.

CMU/SEI-87-TR-29 3

.1
T-

System Control Interrupt Service
Block Routine

300 ISR Address ____

0-Bus Device

Figure 2-2: Associating a Device Interrupt with an ISR Via System Control Block Entry

This kernel service places the starting address of the ISR into the processor's system control block
(SCB) [DEC 84] in order to link a device's interrupts to the ISR. At invocation, the CREATEDEVICE
procedure requires a device name, an interrupt vector number, and starting address of the ISR (which
must match the information specified during the system build process; see Figure 2-1). In return, the
out p8t ameters are the device's base address (i.e., the address of its first control/status register), the

address of a communication region that can be shared by an application and an ISR, and a VAXELN

device object. The application code subsequently uses the device object to synchronize with the
device's corresponding ISR.

2.2. Synchronizing the Application with Intercepts

The VAXELN kernel employs an object-based, signal/wait model (see Figure 2-3) for synchronizing
application code with the hardware interrupts. Specifically, the kernel treats the device object

*returned from a CREATEDEVICE call as a binary semaphore. When an interrupt occurs, the kernel
invokes the appropriate ISR, which must signal the occurrence of the interrupt through the cor-
responding device object. This signaling is performed by a call to the non-blocking SIGNALDEVICE
kernel service which sets the value of the device object (i.e., binary semaphore). The application
code 3ynchronizes with an ISR and, therefore, with the occurrence of a particular interrupt by waiting

for this device signal, using either the WAITANY or WAITALL kernel service (see [DEC 86b] for

further details). Calls to these services suspend until the specified conditions (in this case, a device
object value of at least one) are satisfied or, optionally, a timeout occurs; if a wait on a device signal is

satisfied, the device object's value is reset to zero.

4

CMU/SEI.87-TR-29.

I1

AP

VAXELN KERNEL

0 Device
00 Ob000

Application
Code

Figure 2-3: VAXELN Signal/Wait Synchronization Model

2.3. Data Sharing

The ISR and application code share data through an interrupt communication region. For example,

the ISR passes data to the application code by reading the device data registers and placing the
values into the communication region for later use by the application. The ISR receives the starting

address of the communication region as a parameter from the VAXELN kernel; subsequently, the

application code uses the data region address returned by the CREATEDEVICE to access this

shared region.

CMU/SEI-87-TR-295

9..

6 CMU/SE5487-TR-29

3. KWV1I-C Programmable Real-time Clock

The KWV11 -C printed circuit board is a programmable real-time clock that is Q-bus compatible.

3.1. Functional Description
The KWV11-C supports five clock rates (1 MHz, 100 KHz, 10 KHz, 1 KHz=z, 100 Hz), which are

derived internally from a 10 MHz crystal oscillator. The device has a 16-bit counter that can generate
processor interrupts, four programmable operation modes,, and two Schmitt triggers, each with slope

and level controls that can start the clock or generate interrupts. Refer to (DEC 86c] for further details

about the Schmitt triggers.

The KWVI -C can generate two distinct interrupts, clock overflow and Schmitt trigger, and therefore
,.'. requires two interrupt vectors. It has two read/write device registers that can be addressed by the

processor; a control/status register (CSR) and buffer/preset register (BPR). The CSR allows you to

4. control the operation of the device (e.g., enable interrupts, select clock rate, start the internal counter)
and to query regarding its current operating status. The BPR supports two different functions de-

pending on the clock's current mode of operation; both functions deal with interfacing with the clock's
.-. counter. In one case (Modes 0 and 1) it provides a mechanism for the loading the counter, and in the

other (Modes 2 and 3) it provides indirect reading of the counter's current value.

, 3.2. Modes of Operation
The KWV11 -C can operate in any one of four modes:

Mode 0 Single Interval Interrupt: The GO command (i.e., setting the GO bit of the clock's
CSR) is used to load the counter with the 2's complement of the number of ticks to
wait before generating an interrupt. The counter increments at the selected clock rate
until an overflow occurs and an interrupt is generated (assuming the INTOV flag of the
CSR is set). It then waits for another GO command.

Mode 1 Repeated Interval Interrupts: Same as Mode 0 except that the counter is re-loaded
and continues counting after it overflows. This mode supports repeated interrupts
whose period is the value in the BPR.

Mode 2 External Event Timing: The counter increments at the selected clock rate and upon
* input (i.e., high logic signal) at Schmitt trigger #2, its contents are loaded into the BPR,

where the value can be read. This firing of Schmitt trigger #2 can be simulated under
program control by setting the MAIN_ST2 bit of the clock's CSR. In this mode, the
counter continues without interruption.

Mode 3 External Event Timing Zero Base: Same as Mode 2 except that the counter is reset to
zero after its contents are loaded into the BPR.

CMU/SEI-87-TR-297

": . .,0- " " " "4 .. " " ' "" '

3.3. Program Control
This section presents typical programming scenarios that can be used to control the KWV1 1-C for
each of its operational modes. We assume that, where necessary, interrupt service routines are
already associated with the clock's interrupts. Appendix B contains sample Ada code corresponding
to each scenario.

Single Interval Interrupt (Mode 0)
1. Load the BPR with the 2's complement of the number of clock ticks to wait before

generating an counter overflow interrupt.
2. Load the CSR with the appropriate settings: mode 0, desired clock rate, and the inter-

rupt enable flag (INTOV) set to TRUE.
3. Set the CSR's GO bit to load the counter from the BPR. The counter increments at the

selected clock rate until it overflows. A counter overflow interrupt is generated, and the
CSR overflow flag (OVFLO) flag is set.

4. To repeat this process, clear the overflow flag (OVFLO) and set the GO bit.

Repeated Interval Interrupts (Mode 1)
1. Load the BPR with the 2's complement of the number of clock ticks representing the

period at which counter overflow interrupts are to be generated.
2. Load the CSR with the appropriate settings: mode 1, desired clock rate, and the inter-

rupt enable flag (INTOV) set to TRUE.
3. Set the CSR's GO bit to load the counter from the BPR. The counter increments at the

selected clock rate until it overflows. The count value is then re-loaded from the BPR,
an counter overflow interrupt is generated, and the CSR overflow flag (OVFLO) flag is
set.

4. To allow subsequent interrupts, the overflow flag (OVFLO) must be cleared. If a sec-
4-' .ond counter overflow occurs before the flag is reset, the flag overrun (FOR) bit is set.

5. To stop the clock from generating interrupts, clear the CSR's GO bit.

External Event Timing (Mode 2)
In this mode, interrupts can be generated while monitoring external events; external events can be
counted; and the elapsed time of external events can be recorded. The scenario below addresses
only the latter application.

* -1. Load the CSR with the appropriate settings: mode 2, and desired clock rate.
2. Set the CSR's GO bit to start the counter at the beginning of the external event that is to

S"-be timed. At this point, the counter is cleared and begins incrementing at the selected
clock rate.

3. Upon completion of the timed event, simulate an external event by setting the mainte-
nance flag of the the second Schmitt trigger (MAIN ST2). This input at ST2 causes the
contents of the counter to be loaded into the BPR and sets the ST2 interrupt flag
(INT2). Note: the counter continues ticking.

4. Accessing the value stored in the BPR gives the number of counter ticks that elapsed
since the CSR's GO bit was set and the ST2 Input occurred.

5. To stop the clock's counter, clear the CSR's GO bit.

8 CMU/SEI-87-TR-29

External Event Timing Zero Base (Mode 3)
The programming scenario for Mode 3 is Identical to that of Mode 2 except the counter is automat-
ically cleared after every ST2 input.

.1.

zj e

.CMU/SE7-TR-299

A,

~.

I.

10 CMU/SEI-87-TR29

04

' -

4. Ada Interface to KWV1 1-C Clock
This section presents information specific to implementing an VAXELN Ada interface for a KWV1 1-C

device operating within a MicroVAx lI/VAXELN 2.3 target environment. We also discuss the process of
handling device interrupts with VAXELN Ada code.

4.1. Access to Device Registers

The KWV1 1-C has two 16-bit read/write device registers, the control/status register (CSR) and the
buffer/preset register (BPR). The CSR allows you to control the operation of the device (e.g., enable
interrupts, select clock rate, start the internal counter) and to query regarding its current operating
status. The BPR supports reading from and writing to the clock's counter. At the lowest level of the
KWV1 1-C interface, data types must be defined and laid out using Ada representation specifications
to allow full access to, and control of, the contents of the device registers. The following Ada package
serves this purpose.

with SYSTEM; use SYSTZ;
with VPJCWSZRVICES;

package MKV RegisterDefinitions is

-- I1-V-1-C Control Status Register layout

type IKVCSRRecord is record
go IOOXZAN; -- start the counter
Mode USIGIMD_2; -- mode of operation
rate UNSIGNID_3; -- clock rate
int -ovf OOIZEAN; -- enable interrupt on overflow
ovfiflag BOOZAN; -- counter overflow occurred
mint sti : OOLIaN; -- simulate firing of sti
mintst2 : OOLU; -- simulate firing of st2
int osc : DOLEAM; -- simulate one cy. of oso
dio : OOLEAN: -- disable internal oscillator
flagoverrun : BOOLAN; -- interrupt overrun
st2_go enable : BOOLRAN; -- assertion of st2 flag sets go bit
st2_int enable : o00LJUN; -- assertion of st2_flag causes an interrupt
st2-_flag : SOLUN; -- start interrupt request for st2

end record:

for KWV CR Record use record at mod 2;

go at 0 rango 0..0;
mode at 0 rango 1..2;
rate at 0 range 3..5;
int ovf at 0 rango 6..6;
ovtflag at 0 range .. 7;
min;t sti at 0 range 6. .9;
maint st2 at 0 range 9..9;
mint osc at 0 range 10..10;
dio at 0 range 11..11
flag overrun at 0 range 12..12;
st2 go enablo at 0 range 13..13;

% st2_int enable at 0 tango 14..14;
s t2.flo-g at 0 Zaneo 1S..S;

end record;

CMU/SE1-87-TR-29 11
6i

for INV CUR Record'8lZZZ use 16;

-- JNV11-C Buffer/Pr aot Register layout

subtype 1l _PNType is VAXMLN_ CXcK.NV COUMM TYPZ;

-- Record type containing the KIr1-C'a COR and Buffer/Preset Register

type IwRegiatora is record
CSR : K1V COR Record; -- ontrol/status register
DBR : iV R Type; -- buffer/preset register

and record;
prague PACK (KwV_Reqgsters);

procedure Put CSR (CUR : n KW _COR Record;
Register Address : in ADDREES);

function Get -CU (RegiAter-Lddress : in ADDRESS) return 3W_ CSRRecord;

end WV Register Definitiona;

This package also provides two primitive operations for reading and writing the contents of the clock's

controVstatus register, namely Put_CSR and GetCSR.

4.2. Ada Interrupt Service Routine

When writing an interrupt service routine (or any Ada subprogram) that will be invoked by the VAXELN

kernel, the following requirements must be satisfied to ensure proper run-time behavior [DEC 86d].

* Each subprogram must either be a stand-alone program library unit or must be declared
at the outer-most level of a library package (i.e., its specification or body).

* The subprogram's name must be exported via the appropriate VAXELN Ada pragma (e.g.,
EXPORTPROCEDURE) in order to resolve any external references during linking.

" The subprogram must be compiled with a pragma SUPPRESSALL to disable stack
overflow and underflow checks that would otherwise fail when invoked on the kernel
stack.

" The subprogram must avoid using Ada tasking operations and input/output operations,
and should minimize the calls to external subprograms.

The following is a minimal ISR coded in Ada.

with UTSTEM;
, with VAXMELWVZCK; use VAM _BSEUVZMS;

with COUITIOM HANDLING;

with W7 Rgistr Definitions; use 1WK RgisterDefinitions;

procedure Timer 1nterrupt RoutLne(DevisceRegisters : in out MV tRegisters;
Interrupt Region : in *Y STDI.ADDRS s;
IlR Context : in hMRCOUTEXTTYPE) is

RtuzeCodo : COUDITIO-AMLING.COND_VALUETYPE;
begin

*12 CMUISEI-87-TR-29

VA~LN SEMV!ZS. Signal-Device (Status >RtrCoe
DeviceNumber ~'0,
ISR Context > hRContext)

end TimrInterruptRoutine;
prague E3ORTPROCEDURE (Tim. _Interzupt _Routine);
prague SUPPRESS ALL;

To use this ISR you would "with" the subprogram and then use Timer_-Interrupt-Routine'ADDRESS
as the address of the service routine in a CREATE_-DEVICE call. For example, the following code
associates the clock's counter overflow interrupt (first interrupt vector) with the
TimerInterrupt Routine ISR.

with SYSTEM;

with CONDITION ANDLING;

Z) ~with VTLo-NerVICES; in

procedure ISR Zzample is
Device Name constant STRING :- "KWil1;
Re& sters SYSTEM. ADCRESS2;
Retain Code CONDITIONHANDLING.CN 01_VALUETYPE;
TimerDevice VAMLU RVIC8.DVIC _ARRALYTYPE(0. .0) :-(others ->0);

begin
Create Device (Status ->Return code,

DeviceName - Device Niame,
Vector Number ->1,
ServiceRoutize => Timer-InterruptRoutine' ADDRESS,
Registers => Registers,
Device Array => TimerDevice,
Device-Count => 1);

end ISR xaple;

* Note that the string name of the device being created must match the name of a device specified in
this program's VAXELN build file (see Figure 2-1). For instance, a typical build file for the main
program might look like this:

program ISR~faample /debug /oekre
device KW11 /registrm%077042 0 /vectoz-%044 0 /noautoload
terminal CONSOLE /hardcopy

* 4.3. Device Interface
~ '.PThe package specification listed below provides the necessary data types, procedures, functions, and

exceptions for interfacing to multiple KWV1I -C real-time clocks using Ada application code. These
k~: ~routines support all four modes of the clock's operation in addition to its five internal clock rates',

however, only counter overflow interrupts are supported and not Schmitt trigger interrupts. The
VAXELN Ada kernel services (KWV -INITIALIZE, KWV_READ, KWV_-WRITE) provide the necessary

~. -. ~ Interfaces for supporting the handling of the clock's Schmitt trigger interrupts. This Ada package
% specification is listed again in Appendix A along with its corresponding body.

CMUISEW-7-TR-29 1

with ViAXM WZVICES;
with CCUDIT7XON UDUNG;
with SYSTEM;

package KWVI.ClockWanager is

-- Data types imported from SYSTEM package

subtype ADDRESS is SYSTEM.ADDRESS;

-- Data types imported from CONDITION HANDLING package

subtype CON1D-V3LUE TYVE is CONDITION NANDLING. COND-VLUE_-TYPE;

-- Data types imported from VX 5E-SRVICZS package

subtype DZVICZ TYPE is VZ2MNIZRVICZS. DZVICZTYPEZ;
subtype WKVCOUNTERTYPE is VAUMI5 SERVICES KV COUNTERTYPE;

P subtype VECTORNUMUER TYPE is VAXW.IM SURVICS. VECTOR NDIZRTYPE;

-- Local Data types

'4.' type Clock-ID is private;

type Clock Mode is (Mode Zero, Mode One, Miode-Two, Mode-Three);

for ClockMode use (MoaeZero => 0, ModeOneo 1,
Nods Two -> 2, Node Thre- 3);

type Clock-Rate is (Stop, RatelMOZ, Ratel 001HZ,

NatelOxnZ, RatelXHZ, RatelOORi);

for ClockRate use (Stop -> 0, RatelVEZ ->1,
RatelOOXNZ -:o 2, Ratel OKAZ ->3,
RatelEHA -> 4, RatelOOHE - 5);

procedure Initialize (ClockName in STRING;
ClockIdentifier : out Clock ID;

*Md: in Clock Mode;
Rat. in Clock Rate;

*Vector Nuber :in VECTORNURSETYPE;
service Routine :in ADDRESS;

CSR7Address ouat ADDRESS;
Device Object :out DEVICZ TYPE)

procedure Re-Initialize (ClockIdntifier : in Clock1ID;
Mo"e: in Clock Mod";
Rate : in Clock-Rate)

procedure DisplayCSR (Clock Identif ier :in ClockID);
procedure Reeble Interrupts (Clock Identifier :in ClockID);

"Uprocedure Disable Interrupts (Clock Ientifier :in ClockID);
, ,procedure Generate Interrupts (Clock Identifier :in Clock ID);

procedure &&set Interrupt Fl.9 (ClockIdmentifer :in ClockID);
procedure oeset- erun-Flag (Clock-Identifler in Clock ID);
procedure SetInterrupt period (Clock Identifier :in ClockID;

Period :in 11WCEUT UType)

14 CMU/SEI-87-TR-29

.U .. procedure Start Counting (Clock Identifier : in Clock ID);
procedure Read Counter (Cloak Identifier : in Clock ID;

Nunber_OfTick. : out V_COUNTER Type)
procedure Stop Counting (Clock Identifier : in Clock ID;

NumberOf_Ticks : out KWV COUNTER Type);

. , function Interrupts _nabled (Clock Identifier : in Clock ID) return BOOLEAN;.functio CurrentMod (CloakIdentifier : in ClockID) return ClockMode;
f function Current Rate (Clock_Identifier : in Clock_ID) return ClockRate;

function Interru Period (Clock_Identifier : in Clock_ID) return KWV COUNTERType,
function Interrupt Flag On (Clock_Identifler : in Clock_ID) return BOOLEAN;
function Overrun FlagOn (Clock Identifier : in Clock_ID) return BOOLEAN;

Invalid ClockMode : EXEPTION;
InitializationError : EXCPTION;
Clock_Not _Initialized : EXCEPTION;

private

. subtype ClockID Range is LTURAL range 0..31;
type ClockID is new ClockID Range;

end XWV1lClock_Manager;

. -: 4.4. Using the Device Interface

4.4.1. Initializing
The Initialize procedure creates a VAXELN device object for the clock and gives you a private clock
identifier. The VAXELN device object can be used by the application to "Wait" via a VAXELN kernel calt
on a device signal originating from an interrupt service routine. The clock identifier is a key for
invoking all other subprograms in the package. The InitializationError exception is raised if the
VAXELN kernel device object cannot be created. The clock's rate and mode are set by the Initialize
procedure and can be reset using the Re_Initialize procedure; however, the address of the ISR
associated with the clock's counter interrupt can only be specified through the Initialize interface. The
CurrentRate and CurrentMode functions respectively return the clock's current rate and mode as
set by either the Initialize or ReInitialize procedure. The DisplayCSR subprogram displays the

S"current contents of the clock's control/status register to standard output.

-" 4.4.2. Controlling Operation
The following routines can be used to control the operation of the clock and to query regarding its

. current operating status: EnableInterrupts, DisableInterrupts, SetInterruptPeriod,
" - GenerateInterrupts, Reset_interruptFlag, ResetOverrun_Flag, Interrupts-Enabled,
i"" ",; Interrupt-Period, InterruptFlagOn, OverrunFlag_On. Given a valid Clock_ ID, these routines set,

0' reset, and query current values for the various bit fields of the CSR and BPR associated with the

clock device represented by the clock identifier. A brief functional description of each of these sub-
.- programs follows:

Enable_Interrupts Set the lilt_ovf bit of the cicck's CSR to enable interrupts when the
•' internal counter overflows.
1i Disable_Interrupts Reset the nt._ovf bit of the clock's CSR to disable interrupts when

the internal counter overflows.

CMU/SEI-87-TR-29 15

04VII

'U:

Setjnterrupt_Period Load the 2's complement representation of the specified number of
ticks into the clock's BPR. This number of ticks represents the
period for interrupt generation.

Generate_Interrupts Set the GO bit of the clock's CSR to start the internal counter. This
subroutine is used in conjunction with EnableInterrupts.

* ResetInterruptFlag Reset the ovfjflag bit of the clock's CSR to allow subsequent inter-
rupts.

ResetOverrunFlag Reset the flagoverrun bit of the clock's CSR. This bit is set when
a counter overflow occurs and the ovfjflag has not been reset after
the last interrupt. This indicates that the hardware is generating
interrupts faster than the software can service them.

InterruptsEnabled Returns a Boolean value indicating whether or not the Int_ovf bit of
the clock's CSR is set.

Interrupt-Period Returns the current interrupt period value in the clock's BPR.
InterruptFlag_On Returns a Boolean value indicating whether the ovf.flag bit of the

clock's CSR is set.
Overrun_FlagOn Returns a Boolean value indicating whether the flagoverrun bit of

the clock's CSR is set.

4.4.3. Time Measurements for External Events
The StartCounting, Read Counter, and StopCounting procedures provide support for timing exter-
nal events. They should be used only in Modes 2 or 3. In any other mode, the InvalidClockMode
exception will be raised. The distinction between ReadCounter and Stop_Counting is that the
counter continues to tick when the clock is read by the ReadCounter subprogram and stops count-
ing otherwise. These routines can be used in two ways:

1. Continuous timing

Start Counter (yclock ID);

ead_Counter (My_Cqlock_ID, NumberOfTicke);

end loop;
ftopCounter (WyClock_ID):

2. Single timing

Start Counter(My_Clock_ID);
< sequence of events to be timaed>

StopCounter (Ky_C.ck.ID);

16 CMU/SEI-87-TR-29

4.4.4. Miscellaneous
Following are hints for using these routines:

.I o Be sure to follow the restrictions for implementing an ISR in Ada. See Section 4.2 for
details.

* The three most likely causes of the InitializationError exception are:

1. The device name specified in the Initialize call cannot be found in the list of
devices created by the System Builder from the main program's build file.

2. The Initialize procedure was called from a program that was not running in kernel
mode.

3. The device named in the Initialize call is already connected to a VAXELN device
object.

The counter routines should be invoked only when the clock is operating in Mode 2 or

Mode 3.

-1

I

."

4..

1CMU/SEI-87-TR-29 17€

*II,

J ..

18 CMUISEI-87-TR-29

',z% '-..'

*" 5. Results

This section presents results specific to developing a real-time clock interface in Ada on a MicroVAx
I/VAXELN 2.3 target system using the VAXELN 1.1 Ada compiler and a KWV1 1-C programmable real-

-" time clock. These results take the form of technical observations relevant to an application devel-
oper, recommendations to the compiler implementor, and performance measurement results.

I5.1. Technical Observations

We made the following observations while experimenting with VAXELN Ada and the real-time clock
interfaces.

1. To redirect standard output to a file on a remote DECnet node, the File Access Listener
option must be turned on at VAXELN system build time. Furthermore, the file that will

S:-receive the output must exist with WORLD read and write access enabled. There are
two alternatives for redirecting output: redefine the system logical SYS$OUTPUT at
build time, or use Ada TEXT_10 routines (OPEN, PUT, PUT-LINE, CLOSE) with the
remote file name.

4 2. There are guidelines and restrictions for writing an ISR in Ada. See Section 4.2 for
details.

S,..- 3. Using the /map and /full qualifiers on the EBUILD command yields a complete map of
', .' everything in a program's executable load module. This information is useful for ex-

amining the CSR and vector addresses of the known devices. It is also handy for
learning which device drivers are being loaded along with your main program.

4. When building a VAXELN application that calls the CREATEDEVICE service, device-
Lspecific information must be provided in the program's VAXELN build file - minimally, the

-. device name (a string matching that used in the application's CREATE DEVICE call),
. the CSR address, the interrupt vector address, and an indication as to whether to load

the standard device driver. Additionally, the application must be able to execute in
kernel mode.

5. The VAXELN service, KWVINITIALIZE, results in an access violation when it is used for
re-initialization; the program terminates, which is incorrect behavior.

6. An Ada block with local variables whose memory locations are specified with address
clauses provides an effective way of accessing data stored in particular locations of

-,-. memory. For instance, the KWVREAD kernel service returns the starting address of
" " .,/ the data it fetches. The following Ada code segment illustrates this technique for ac-

cessing data starting at a specific memory address:

KI TV EAD (Identifier -> ClockID,
ValueCount M> 1,
DataArray_Ptr -> ClockData Address,
BT2_GoEnble -> ALSE,
Status -> etu=de)C ;

6
declare

Tick. I TER :- 0;
- Clock Data array (0..0) of UNSIGUED WORD;

for ClockData use at ClockData _lddress;
begin

Ticks :- flMTZE(Clook Data(0));
Put Line (INTzE'I3R z (Ticks));

end;

., ,-.

, CMU/SEI-87-TR-29 19

Vx

-- -- - ---- - -------------- ,- - - - - - - - -. - -

7. There appear to be at least two ahtematives for writing to and reading from device
registers in memory: directly assigning locations then using the technique described
above to access them as Ada variables, or using predefined WRITEREGISTER and
READ_-REGISTER subprograms. However, In practice , the first alternative cannot
guarantee correct operational behavior-the generated code is likely to contain variable
length bit field instructions, which are not permitted by the architecture, for accessing
device registers. On the other hand, the WRITEREGISTER and READREGISTER
subprograms Indicate to the compiler that only permissible instructions will be gener-
ated; therefore, the second altemnative can guarantee proper run-time behavior. The
following example further illustrates this point:
Direct Assignment

DA. 05 procedure EnableInterrupts (Clock-Identifier :in Clock_-ID) is
DA. 06
DA. 07 CurrentCSR KWVCSRRecord;
DA. 08 for Current-CSR use at7Clock Array (ClockIdntifier);
DA.09
DA.10 begin

DA.17 if Clock Array(Clock Identifier) I-ADDRESSZERO then
DA.18 Current_-CSR.int-ovf :- TRUE;

>>> movzbl #1,r2
>>> kInv r2A#6,#l,(r3)

DA.19 else
DA.20 raise ClockNotInitialized;
DA.21 end if;
DA.22
DA.23 end Enable Interrupts;

Read/Write Register Calls
RK.06 procedure EnableInterrupts (ClockIdntifier in ClockID) is
RW.07
RW.0S CurrentCSR INVCSRRecord;
RW.09 Tamp ~ UNSIGNEDWORD;
RW.10 CSR Unsigned UNSIGNEDWORD;
RW. 11 for CSR Unsigned use-at Clock Array (ClockIdentifier);
RW.12
RK. 13 function Convert-It is new UNCRECKDCONVERSION (UNSIGNEDWORD,

KWV_CSRRecord);
RW. 14 function ConvertIt is new UNCRECKDCONVERSION (1W_CSRRecord,

UNSIGNEDWORD);
RK. 15
RW.16 begin

WN.23 if ClockArray(ClockIdentifier) /= ADDRESSZERO then
RW.24 Tel :- READREGISTER (CSRUnsigned);

movw (rl),rO
movw ,C,r2

RW.25 Current CSR :- Convert-I(e)
movw r2,-20(tp) tTa)

* ~ mvab -16(fp),r3
>>> movw -20(fp),(r3)+

RW.26 CurrentCSR.int ovf :- TRUE;
"2- movzbi N1,r3
X-2.>iav r3,dr6,01,-16(fp)

N.27 Teq :- Convert It (CurrentC8R);
>02 rnovab *14(fp),r3

02.2, movw *16(fp),(r3).
212-> movw *14(fp),r2

20 CMU/SEI-87-TR-29

% '4W 'r -*

RK.28 MUTITEPGZTER(Temp, CSRUnsigned);

cvtwl r2r3
movw r3,(rl)
ret

RW.29 also
ML.30 raise Clock_NotInitialized;
RT.31 end if;
RW.32
R9.33 end Enable_Interrupts;

The generated assembler code in these examples (indicated by > at the start of the
line) shows that the Insv (insert variable length bit field) instruction is used for doing the
Boolean assignment currentCSR.Int._ovf := TRUE; in both code segments (Line
DA.18, RW.26). In the first case, the base operand of the instruction is a device
register and will yield unpredictable results. In the second case, the base operand of
the Insv instruction is a temporary variable that later performs the necessary type con-
version (Line RW.27) prior to the WRITEREGISTER call. Notice that the

% ~ WRITE_-REGISTER call generates a move word (movw) instruction (Line RW.28) for
writing to the device register.

5.2. Recommendations

1. Vendors should supply better documentation and more detailed examples of Ada ISRs.
For example, the present documentation does not explicitly state the numbet and type

•- of ISR parameters. A trouble-shooting checklist for commonly occurring problems
would also be useful.

2. In order to support more functionality, the restrictions should be loosened on the ISR
code to avoid Ada tasking operations and to minimize the calls to external sub-
programs. Task entry calls should be permitted from within an ISR in order to provide
an interrupt handling capability similar to the one suggested in the Ada Language Ref-
erence Manual [DoD 83].

5.3. Performance Measurements

For each example of Ada code presented in Appendix B, we recorded:
* e number of lines of code (i.e., number of carriage returns)

* number of statements (i.e., number of semi-colons)
• object code size

.- * system load module size

We also used the KWV1 -C real-time clock to measure the elapsed time from when the hardware
generates an interrupt until the application code resumes execution. The interrupt latency time can
be more accurately measured using hardware techniques (e.g., logic analyer) and still must be done.

CMU/SEI-87-TR-29 21

* %

VAXELN Ada Code Sizes

Program Name LOC # Stmts Object Code Bytes Load

Size (bytes) Per LOC Module(bytes)

Mode0_Test 110 44 5632 51.2 305_152

ModelTest 118 45 6144 52.1 305_152

Mode2_Test 70 30 5120 73.1 304_128

Mode3_Test 76 34 5120 67.4 304_128

We used two software measurement techniques to measure the elapsed time.

Technique #1
The essence of this approach is to start at an interrupt frequency that the software can handle and to
increase this frequency until the software can no longer service the interrupts fast enough. This will
give a rough measure of the time elapsed from the interrupt occurrence until the application code is

'- re-scheduled and executed. This measurement can be taken by operating the clock in Mode 1 and
looping, decrementing the interrupt period by one for each iteration until the clock's overrun flag is
set, indicating that software is not keeping up with the interrupt rate. The following pseudo-code
represents the logic of this technique (see Appendix C for the Ada code associated with this

approach):

. Ticks :- 5000;

loop
Re-initialize clock
Enable clock overflow

. -Ticks :- Ticks - 1;
Program clock to generate interrupt every Ticks microseconds

* . Start generating the interrupts
Wait for a signal device (kernel service) call from the ISR
Reat interrupt flag to allow more interrupts to be generated

. Exit when OverrunIlagOn(My_Clock_ID);
end loop;

* .Print current value of Ticks

Technique #2
This technique is direct and reliable. It can be performed when the clock is operating in either Mode 2
or Mode 3. It combines the counter-reading capability of these modes with the fact that the counter
will generate interrupts when it overflows, regardless of the mode of operation. The approach is to
enable counter overflow interrupts, start the counter, wait for a signal from the ISR caused by an

22 CMU/SEI-87-TR-29

1*- **•* .-

- - - - -

interrupt, and finally read the current counter value. The following pseudo-code represents the logic

of this technique (see Appendix C for the Ada code associated with this approach):

. nable overflow interrupts
Start Counting
Wait for a signal device (kernel service) call from the I1R

. , Stop Counting (ramd current counter contents)
Print number of Ticks

VAXELN Ada Software Interrupt Latency (usec)

(Each average based on 25 data points)

Technique #1 Technique #2
Ile Mode 2 Mode 3

Maximum time 903.00 331.00 277.00

Minimum time 229.00 270.00 256.00

Average time 357.12 274.20 271.04

* Standard Deviation 237.87 11.63 4.70

CMU/SEI-87-TR-29 23

I%%-U* * . . .* . .!* * . .. - ' . . . 4 ~ * *-

- . U . 4

V
h

'I.

.r~V

It
1%

0

Sri

'*1~
.1"
r

4-'
p

'.1
A

4~lt

1$

"-4

24 CMU/SEI-87-TR-29

04

F-' -, VP f C '',.''
A' "

Bibliography
[DEC 84] Digital Equipment Corporation.

Guide to Writing a Device Driver for VAXA'MS
Maynard, Massachusetts, 1984.

[DEC 851 Digital Equipment Corporation.
VAXELN User's Guide
Maynard, Massachusetts, 1985.

[DEC 86a] Digital Equipment Corporation.
VAXELN Release Notes
Maynard, Massachusetts, 1986.

[DEC 86b] Digital Equipment Corporation.
VAXELN Ada User's Manual
Maynard, Massachusetts, 1986.

A ~[DEC 86c] Digital Equipment Corporation.
LSI- 11 Analog System Users' Guide
Maynard, Massachusetts, 1986.

[DEC 86d] Digital Equipment Corporation.
VAXELN Ada Version 1.1 Release Notes
Maynard, Massachusetts, 1986.

[DoD 83] U.S. Department of Defense.
"" Reference Manual for the Ada Programming Language.

ANSI/MIL-STD 1815A, DoD, January, 1983.

4 .2

0 'b

,.-.-. , ,- - , ,,%: -. . -.:,,... .: : : ::::'. ::::: ::::::: :

4

a,.

A

S

5%
1% ~

a,.

p...
U,.
8%~.

"1
U.S

S.
"a.

A
S

0

V
4/

9

0.1

A- S~
A.

5%
V.

S.'
'p

S

4.

-U-.

U'-.
-a

26 CMU/SEI-87-TR-29
B

04

-t '-' j.&~g' w U ~. ag. - A~I '~

Appendix A: KWV11_ClockManager Source Code

A.a. KWVRegister Definitions Package Specification

- - -------------- SI Ada Embedded ystmas Project Prologue---------------

Unit nam : KV_ReisterDefinitione package specification
zperiment # PA01

-- Version 1.0

-- Author Mark W. Borger

-- Date created 20 Feb 1967
-- Last update : 12 Mar 1987

o-- Eat Machine : VXZLU/VMS 4.5
-- Target Machine: VAXZZ 2.3

- Abstract : This package specification provides the necessary
---------------- :data types to access the Control Status and Buffer
---------------- registers of a Hll-C Real-time programeable clock.

--------------------------- Revision Ristory---------------------------

- Date Version Author History
_ 12 Mar 67 1.0 Mark W. Borger Added prologue

---------------------------- End of Prologue---------------------------

with SYSTEM; use SYSTEM;
with VAXELNSERVICES;

package KV RegisterDefLnitions is

-- KWV11-C Control Status Register layout

type KIV_CSRRECORD is record
go : BOOIEAN; -- start the counter
mode: UNSIGNED_2; -- mode of operation
rate : UNSIGNED_3; -- clock rate
int ovf : BOOLEAN; -- interrupt on overflow
ovf flag : BOOIAN; -- counter overflow occurred

4 malnt tl : BOOLEAN; -- simulate firing of stl
maint-st2 : BOOLEAN; -- simulate firing of st2
maint osc : BOOLEAN; -- simulate one cy. of osc

- dio : SOIEAN; -- disable Lnternal oscillator
flag overrun : BOOLEA; - true if orf occurs with ovf_flag still set
st2_go enable : SOOLEAN; - sertion of st2_flag sets go bit
st2 Lnt enable : BOOLEAN; -- assertion of st2_flag causes an interrupt
st2 flag : BOOLEAN; -- start interrupt request for st2

end record;

CMU/SEI-87-TR-29 27

for IVCRUIWD use record at mod 2;
go at 0 Zang. 0. .0;
SOd" at 0 range 1. .2;
rate at 0 Zang. 3. .3:

1 mt-owf at 0 Rang. G. .;
povf flag at 0 range 7..7;

~min;t sti at 0 range 6.a;
mint~st2 at 0 range 0..9;

.1 mit~eec at 0ran" 1O..10;
dio at 0 rang. 11- 11;
flag_o*errun at 0 mang. 12. .12;
&t2 go enable at 0 rang. 13. .13;
st2 int enabl. at 0 rang. 14.. 14;
vt2 flag at 0 rang. 15.-15;

* and xecord;

for XlivCBRRECORtD'BIZE use 16;

-- - -- -
-- Kml1-C Buffer/presest Register layout

*subtype 1WDiPRTYPE is VAUMWSURV!CS. DIVCoITzRTyp!;

-- Record type containing th~e KWh1-C's COR and Buffear/Preset Register
- - - - - - -

* type 1WREGISTERS is record
CSR XlIVCBRRECORD; -- control/status register
ZPR Kwv DiR_-TYPE; -- buffer/preset register

end record;
pragma PAC (XliVREGISTZRS):

procedure PutCOR (CSR in DIVCgitRRord;
RegisterAddress in ADDRESS);

function Get C.ER (Register-Address :in ADDRESS) return XW CUR Record;

end IWV RegisterDefinition@:

A.b. KW RegisterDefinitions Package Body

------- -------- UE! Ada Embedded Systems Project Prologue--------

~., -unit nam DIV Register Definitions package body
- zperimsnt # PAO1

* -- Version 1.0
-- Author Mark li. morger

PI--Date created 23 Mar 1967
-- Last update

28 CMUISEI-87-TR-29

R- oot Machine :VAZLI/VM 4.5
-Target Machine: VA3Z.N 2.3

-------- Afor redigad writing the KWh,1-C: CUR.

-------------------- Revision Ristory-----------------------------

-Date Version Author Atstory

--------------------- End of Prologue-----------------------------

with UIICRAZD_=CfUVZRS ION;

package body 3W ReisterDfinitions is

function Convert-It is new r-U3CMDCOVRBION (1WCURRecord, UNSIGNED-WORD),;
function ConvertIt Is now MNCZEDC4UVER.SION (UNSIGKEDWORD, 1W_ CSRRecord):

procedure PutCIR (CUR in ENWCSRRecord;
RegisterAddress in ADDRESS) is

CurrentCUR UNSIGMD WORD;
*CURUnsigned UNSIDWORD;
j for CSR-Onsigned use at RegisterAddress;

begin
Current CUR :- ConvertIt(CUR);
VRITZ RIG!ITER (CurrentCUR, CURUnsigned);

and Put_-CUR;
pragm INLINE (PutCR)

function GetCUR (Register Addressa in ADDRESS)

return 1WiCUR.-Record is-

CUR : &WCURRecord;

Current CUR UNSIGNEDWORD;
SR-Unsigned UNSIGNEDWORD;
for CUR Unsigned use ;t Register Address:

begin
Current CUR :- READREGI8TER(CUR Unsigned);

* CSR :- ConvrtIt(CuZrrent CUR);
return CUR:

end Get CUR;

end LW_RegisterDefinitions;

CMU/SEI-87-TR-29 29

W d

A.c. KWV1 1_ClockManager Package Specification

--------------- SRI Ada Echedded Systeas Project Prologue----------------

-Unit na KWV11_ -CokManager
-- xperiment # PAOl
-Version :1.0
-- Author : Mark W. Borger

-Date created 17 Mar 1987
-Last update :18 Mar 1987

B- oat Machine :VWMI5/VMS 4. 5
-- Target Machine: VAXELN 2.3

-Abstract : This package specification provides the necessary
-------- : data types, procedures, functions, and exceptions
-------- : for interfacing to mltilel KWh-C real-tim clocks

------------ :(Q-bus device) via Ada application cods. All four modes
------------ :of the clock'sa operation are supported in addition to

--------- : its five different interna' clock rates. To use these
-------- : routines one mst first invoke the Initialize procedure
--------- : to create a clock device object and get a clock identifier.
-------- : This device object can be used by the application to wait

------------ :on a device signal from an Interrupt Service Routine; the
-------- : clock id is used an a key for the remainder of the package' s
-------- : interfaces. The Initialization exception is raised if
-------- : the VAXEIN kernel device object cannot be created for
-------- : whatever reason. The ClockNtInitialized exception is

------------ :if a specified clock id is invalid.
--------- : These routines only support counter overflow interrupts
-------- : and not Schmitt trigger interrupts. The counter routines
-------- : (Start Counting, ReadCounter, StopCounting) should only
-------- : be used in sods& ModeTwo or ModeThree; when used in any
-------- : mode the InvalidClock-_Mode exception will be raised.

------------------------------------ Revision History----------------------------

-- Date Version Author History
-18 Mar 87 1.0 Mark W. Borger Added DisplayCSR. procedure.
-22 Mar 87 1.0 Mark W. Borger Added Invalid ClockMode exception.

------------------------------------- EZnd of Prologue----------------------------

with VAXEI_ SERVICES;
with COUDITIOUK HANDLING;
with SYSTEM;

package XKM 1-C_ kManager is

-- Data types imported from SYSTEM package

30 CMU/SEI-87-TR-29

%I

subtype ADDRESS is SYSTEM.ADDRESS;

-- Data types imported from CONDITIONHA6NDLING package

subtype COND VALUETYPE is CONDITIONHANDLING. COND VALUE-TYPE;

-- Data types imported from VAXELHSERICES package

subtype DEVICE TYPE is VXEL SEV SDEVICTP TYPE;
subtpe WV OUNER YPE is VAXELN SERVICES. 1WCOUNTERTYE

subtype VECTORNUM3iERTYPE is VAXEI.NSERVICZS. VECTORNUVBFERTYPE;

-- Local Data types

type Clock ID is private;

type Clock-Mode is (ModeZero, ModeOne, ModeTwo, ModeThree);

for ClockMode use (ModeZero >0, ModeOne ->1,

ModeTwo ->2, ModeThree ->3);

type ClockRate is (Stop, RatolMHZ, RatelOOKRZ,
RatslOKHZ, RatelKNZ, RatelOOfil);

for ClockRate use (Stop => 0, R&telXZ w> 1,
RatelOOKEZ - 2, RatelOKBZ - 3,
RatellKl - 4, RatelOONZ - 5);

procedure Initialize (ClockName in STRING;
ClockIdentifier out ClockID;

Mode in Clock_ Mode;
Rate in ClockRate;

VectorNumber in VECTO6RNUMDERTYPE;
ServiceRoutine in ADDRESS;

CSRAddress out ADDRESS;
DeviceObject out DEVICETYPE)

procedure ReInitialize (ClockIdentifier in ClockID;
Mode in ClockMode;
Rate in ClockRate)

procedure DisplayC8R (ClockIdentifier :in ClockID);
procedure EnableInterrupts (ClockIdentifier :in Clock_ ID);
procedure Disable_ Interrupts (Clock_-Identifier :in Clock ID);
procedure Generate_-Interrupts (ClockIdentifier :in Clock_-ID);
procedure Remat Interrupt FTlag (Clock Identifier :in Clock ID);
procedure ResetOverrun Flag (ClockIldntifier :in Clock ID);
procedure SetIn;terrupt Period (ClockIldentifier :in ClockID;

Period :in KWVCOUNTER, Type);

procedure Start counting (Clock Identifier in ClockID);
procedure Read Bounter (Clock Identifier in ClockID;

NumberOf_-Ticks out 1W_ -COUNTERt Type);

procedure StopCounting (Clock Identifier in ClockID;

CMU/SEI-87-TR-29 31

function Interrupts Enabled (Clock Idntifier : in Clock ID) return BOOLEAN;
function Current Mode (Clock Identifier : in Clock ID) return Clock Mods;
function Current Rate (Clock Identifier : in ClockID) return ClockRate;
function Interru-ptPeriod (Clock_dentifier : in Clock_ID) return MOVCoUMTERTypo:
function Interrupt_FlagOn (Clock_Identifier : in ClockID) return BOOLEAN;

, function Overrun Flag On (Clock_Identifier : in Clock_ID) return BOOLEAN;

Invalid Clock Mods : EXCEPTION;
Initiallatio Error : EXCEPTION;
ClockNotInitialized : EXCEPTION;

private

subtype Clock_IDRange is NATURAL range 0..31;
type ClockID is new Clock_ID_Range;

and EWVi 1_ClockManager;

V. A.d. KWV1 1 Clock Manager Package Body

- - - ---------- SEI Ada Embedded Systems Project Prologue---------------

U-- nit name •NV1 -_Clock-Manager package body
-- Experiment # : PA01
-- Version 1.0
-- Author : Mark W. Borger

-- Date created : 17 Mar 1987
-- Last update :

-- Host Machine VAXELN/VMS 4.5
-- Target Machine: VAXEN 2.3

-- Abstract : This package body implements the subprograms of its
---------------- : specification. It maintains a ClockID array containing
---------------- : the corresponding clock's CSR address to allow for the
----------------- : control of mltiple clocks.

--------------------------- Revision History---------------------------

-- Date Version Author History
-- 22 Mar 87 1.0 Mark W. Borger Added data structure to contain

9 -- Mode and Rate f or each ClockID.

----------------------------- d of Prologue---------------------------

* package body KW7ll ClockManager is

-Local Data types

type Clock Information Record is record
Rate : clock Rate:

32 CMU/SEI-87-TR-29

Mode : Clock_Mode;and record;

type Clock InfoArrayType is array(Clock ID) of Clock Information Record;
Clock-Info- : ClockInfo_Array_Type :- (others -> (Stop, ModeZero));

type Clock ArrayType is array(ClockID) of ADDRESS;
Clock-Array : ClockArrayType : (others -> ADDRESSZERO);

CurrentClockNumber : ClockID :-ClockID'FIRST;

procedure Initialize (ClockNam in STRING;
ClockIdentifier out Clock_ID;

Mode in ClockMode;
Rate in ClockRate;

Vector Number in VECTOR NUMER_TYPE;
Service Routine in ADDRESS;

T. CSRAddress out ADDRESS;
Device_Object out DEVICETYPE) is separate;

procedure ReInitialize (Clock Identifier in ClockID;

Mode in Clock_Mode;
Rate in ClockRate) is separate;

procedure Display_CSR (ClockIdentifier in ClockID) is separate;
procedure EnableInterrupts (Clock Identifier :in ClockID) is separate;

procedure DisableInterrupts (ClockIdentifier in ClockID) is separate;

procedure SetInterrupt_Period (ClockIdentifier in Clock ID;
. Period in KWV_COUNTER_TYPE) is separate;

procedure Generate Interrupts (Clock_Identifier in ClockID) is separate;

procedure Reset_InterruptFlag (ClockIdentifier in ClockID) is separate;

procedure ResetOverrun_Flag (Clock_Identifier in ClockID) is separate;

procedure StartCounting (ClockIdentifier in ClockID) in separate;

* procedure Read_Counter (Clock_Idntifier in ClockID;

NumberOfTicks out KWV COUNTER_TYPE) is separate;

procedure Stop_Counting (ClockIdentifier in ClockID;
NumberOfTicks out KWVCOUNTER_TYPE) is separate;

function Interrupts_Enabled (ClockIdentifier in ClockID)
return BOOLEAN is separate;

function Current Mode (ClockIdentifier in ClockID)

return Clock_Mode is separate;r %

function Current Rate (Clock_Identifier in ClockID)
return Clock_Rate is separate;

CMU/SEI-87-TR-29 33

6w;M,

function Interruptoriod (Clock Identifier :in ClockID)
return 1W_ COUNTERTYPE is separate;

function Interrupt Flag qi (Clock Identifier :in Clock-ID)
return BOOLEAN is separate;

function overrun Flagpn (Clock Identifier :in ClockID)
return DOOLEAN is separate;

end KWVl2._Clock Manager;

Initialize procedure

with UNCHECKEDCONVERSION;
with VAXELN_SETRVICES; use VAXELNSERVICES;
with KWV Register Definitions; use EWV Register Dfinitions;

separate (KUVilClockManager)

'SSprocedure Initialize (ClockNamea in STRING;

ClockIdentifier :out ClockID;
Mode in ClockModet;
Rate :in ClockRate;

Vector Number :in VECTOR -NUIMEM TYPE;
serviceRoutine in ADDRESS;

CSRAddress :out ADDRESS;
Debviceo Object :out DEVICE-TYPE) is

*ReturnCode :CORDVALUE TYPE;
XWV21_CSRAddress :AJDDRESS;
CurrentCSR :KWVCSRRecord;
TimerDevice DEVICE__ARRAY-TYPE(...0) :- (others -> 0);

A function Convert It is new UNCRECZED CONVERSION (Clock Mode, UNSIGNED_2);
function Convert It is new UNCBECKDCONVERSION (ClockRate, UNSIGNED_3);

begin

-- Create the KWV1-C device object and associate with its interrupts the

-- Interrupt Service Routine.

Create Device (Status >ReturnCode,
Device Name >ClockName,

*Vector_Number >VectorNumbr,
ServiceRoutine a> Service Routine,
Registers m> IVl_ CSRAddress,
Device-Array >TimerDevice,
Device Count ->1);

if CONDIT ION BANDLING. Success (Resturn Code) then
DeviceObject :Timer Device (0);
Clock Idetifier :mCurrent Clock Number;
CSRAddress :- IVll CSR Address;$ Clck Array (Current Clock Number) - IN11lCSRAddress;

.5'.Clock Info (CurrentC'lockNumber) :-Clock InformationRecord' (Rate, Mode);
CurrentClockNumber :- CurrentClockNumber + ClockID (1);

-Initialize clock via CSR settings

W1.

34 CMU/SEI.87-TR-29

a%

p ~ ~~ -m r -W W - - -. -- - -

Current CSR :- 1WV_C8RRecord'
go ,> FALSE,
mode -> Convert_It(Mode),
rate m> ConvertIt(Rate),
others ,> FALSE);

Put_CSR(CurrentCSR, KWViI1CSRAddessi;
else

raise Initialization-Error;
end if;

nd Initialize;
pragma I.n1M (Initialize);

ReInitallze procedure

with UNCIMEKCONVERSION;
. ,with VAXELN_SETRVICES; use VAXELNSERVICES;

A with KWV Register Definitions; use KWV RegisterDefinitions;

-- % separate (KWV11 ClockManager)

0 procedure ReInitialize (ClockIdntifier : in ClockID;
V 'Mode : in ClockMode;

*Rate :in ClockRate) is

CurrentCSR : KWV_CSR_Record := GetCSR (ClockArray (Clock Identifier));

function ConvertIt is new UNCHECKEDCONVERSION(ClockMode, UNSIGNED_2)"
function Convert-It is new UNCRECKED_CONVERSION(ClockRate, UNSIGNED_3);

begin

-- If specified clock's CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then re-initialize it by clearing the CSR
-- settings; otherwise raise an exception since the specified clock has

-- not been initialized properly.

if ClockArray(Clock_Idntifier) /- ADDRESS_ZERO then

P .Current CSR :- KW CSRRecord' (go => FALSE,
S" --- - mode > Convert It(Mode),

rate -> Convert_It(Rate),
others -> FALSE);

Put CSR (Current_CSR, ClockArray (ClockIdentifier));
Clo k_Info(Clock_Identifier) := ClockInformationRecord' (Rate,IMode);

else
raise Clock NotInitialized;

end if;

end ReInitialize;
prag u INLIUE(ReInitialize);

CMU/SEI-87-TR-29 35

,%.

Dlsplay...CSR procedure
with T=C 10; use T=X 10;
with MW Register Definitions; use ZNVRoitreiitos
with URCMDCMOVERS ION;

separate ('aMvii _Manageqr)

* procedure Display COR (Clock Identifier :in Clock ID) is
Current CUR : KWV CSRRecord :- GetCUR (ClockArray (Clock Identifier));

package Rate_10 is new ENUMERATION 10 (ClockRate);
package Made 10 is new XlU1R&TI~g 10 (ClockMode);
package SOOLEAN 10 is new ENMWERATICE10 I(DOOLEAN);

function ConvertIt is new UNCB3MED C0UVRSON(UNSIND2, ClockMods);
function ConvertIt is new UUNC' vCOVERSION (UNSIGUMD3 * ClockRate);

procedure FormattedString Put (Str :in STRING) is
begin

Put(Str);
SotCol(20);
Put (" - "

end FormattedStringPut;
pragma INLINE (FormattedString_Put);

3 begin

-- If specified clock's CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then display contents of CSR;
-- otherwise raise an e:xception since the specified clock has
-- not been initialized properly.

if ClockArray (ClockIdentifier) /- ADDRESSZERO then
formattedString_Put("CsR.go");
BOOLEP1N IO.Put (CurrentCUR. go); New-Lino;

For-mattedString_Put ("CSR. mode");
ModeMi0.u (ConvertIt (CurrentCSR.mode)); Now-Line;

* FormattedString_Put ("CSR.rate'");
RateIO.Put(ConvertIt(Current CSR.rate)); NewLine;

FormattedStringPut("CSR.int ovf");
BOOLEANIO6.Put (CurrentCSR. int ovf); NewLine;

Formatted_'String_Put ("CSR.ovf flag");
BOOLEAN -10. Put (Current-CUR. ovf flag); Now-Lino;

FrormattedStringPut (CSR.maint-sti");
ROOLEAN I0.Put (CurrentCSR.maint-sti); New_Line;

FormattedString_Put ("CSR. maint st2l);
* OOLEANI0o.Put (CurrentCSR.mait st2); Now-Line;

FormattedStringPut ("CSR.iaint-ose");
80OOLEAN 10. Put (Current CSR. maint ose); Now Line;

FormattedString_Put ("CUR. dio");
SQOIZKAX I0.Put (Current_CSR. dio); NowLine;

36 CMU/SEI-87-TR-29

r0l4o

I,

* FormattedString Put ("CBR. flag_oveorrun);
DOOLEAN 10. Put (CurrentCSR -flag_overrun); Now-Lino;

S FormattedString Put ("C8R. st2 _go _enable");
SOOLEANI1. Put (CurrentCSR. st2 go-enale); NevLine;

*W.Formatted_-String Put ("C8R. st2_Imit -enable);
E0OLIeN-IO.Put (CurrentCBR. st2_int enable); New-Line;

Formatted String Put ("C8R. st2_flag");
q DBOOLEaN0.Put (CurrentCSR.st2_flag); Nov-Lino;

also
raise ClockNotInitialized;

end if;

end Display CSR;

Enable-Interrupts procedure
with KNV .RegisterDfinitions; use KW Regi sterDfinit ions;

separate (RWVllClock Manager)

WI procedure Enable-Interrupts (ClockIdentifier :in ClockID) is

CurrentCSR: KWVCSRRecord :- GetCSR (Clock-Array (ClockIdentifier));

begin

-- If specified clock's CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then enable interrupts on counter overflow;

,LWI -- otherwise raise an exception since the specified clock has
-- not been initialized properly.

- - - - - - - -

if Clock-Array (ClockIdentifier) /- ADDRESSZERO then
CurrentCSR.int 0o;f := TRUE;
PutCSR (CurrentCSR, ClockArray (Clockdntifier));

else
raise ClockNotInitialized;

~ end if;

a nd Enable_-Interrupts;
pragm INLINE (Enable Interrupts):

Disable Interrupts procedure
S.with KWV RegisterDefinitions; use KwV _Register Definitions;

~' '- separate (KWV1l 1Clock Manager)

procedure Dial Iterrupts (ClockIdentifier :in ClockID) is

Current CSR KKV C8R Record Get CSR (Clock Array (ClockIdntifier));

begin

CMU/SEI-87-TR-29 3

-- If specified clock's CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then disable interrupts on counter overflow;
-- otherwise raise an exception since the specified clock has
-- not been initialized properly.

if CokAxray (Clock Identifier) /- ADDRESSZERO then
v Current dSR. nt_ov;f :- FALSE;

Put_-CSR (CurrentCSR, ClockArray (ClockIdntifier));
elso

-. raise ClockNotInitialized;
end if;

a nd DsbeInterrupts;
* prague INLIRRE(DisableInterrupts);

4'. SetInterruptPerlod procedure
with UNCECDCONVERS ION;

with VAXELY SERZVICES; use VAXEIISERVICES;
with XW Register Definitions; use 1W_ Register Definitions;

separate (KWVllClockManager)

procedure SetInterrupteriod (Clockidentifier :in Clock ID;
Period :in KWVCOUNTERTYPE) is

SWDeviceTicks 1W_.COUNTERTYPE;
for DeviceTicks use at (ClockArray (ClockIdentifier) + 2);

begin

-- If specified clock's CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then set the current value of the clock
-- interrupt period using two's ocplemenmt notation; otherwise raise
-- an exception since the specified clock has not been initialized properly.

if Clock -Ar ray (ClockIdentifier) /-m ADDRESSZERO then
WRITE_REGISTER((16#FFFF# - Period + 1), DeviceTicks);

also
raise ClockRotInitialized;

end if;

end Set_-InterruptPeriod;
* prague INLINE(Set Interrupt Priod);

GenerateInterrupts procedure

1 with 1WjRegister Definitions; use KW_ Register Definitions;

separate (KWh1 _ClockManager)

procedure Generate Interrupts (Clock Identifier in ClockID) is
Current CSR :1WVCBRRecord :- Get-CER (Clock_Array (Clock Identifier));

begin
- - - - - - -

-- If specified clock's CSR address is non-zero (i.e., the clock exists

38 CMUISEI-87-TR-29

-- and has been Initialized) then start internal counter which causes
Interrupts; otherwise raise an exception since the specified clock has

not eeniniialzedproperly.

if Clock Array (Clock-ldentifier) /- ADDRECSSZURO then
- CurrentCSR. go :- TRUE;

Put_CS(Current_CBR, Clock Array (ClockIdentifier));
also

raise Clock Not Initialized;
end if;

'~ ~ end GenrateInterrupts;
pragm INLINE (GnerateInterrupts);

Reset Interrupt Flag procedure
with KWV_.Register Definitions; use KW RegisterDefinitions;

separate (DlVIlClock Manager)

P procedure ResetInterrupt,_Flag (Clockidentifier :in ClockID) is
CurrentCSR :KWVCSRRecord :m Get_-CSR (ClockArray (ClockIdntifier));

begin

-- If specified clock's CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then clear counter overflow flag to allow
-- another Interrupt to be generated; otherwise raise an exception since3 -the specified clock has not been initialized props tly.

*if Clock Array(ClockIIdentifier) /- ADDRESSZERO then
CurrentCSR.ovf flag :- FALSE;
PutCSR (Current CSR, ClockArray (Clock Identifier));

else
raise Clock NotInitialized;

end if;

end ResetInterrupt_Flag;
pragma INLINE (Reset Interrupt,_Flag);

% ResetOverrun Flag procedure
with DIVRegister Definitions; use KWRegisterDefinitions;

separate (DWll iClock Manager)

Aprocedure Reset Overrun Flag (ClockIdentifier in ClockID) is
*CurrentCSR 17W CUR "Record :- GtCSR(ClockArray(ClockIdentifier));

begin
- - - - - - -

-- If specified clock's CSR address is non-zero (i.e., the clock exists
a- nd has been initialized) then clear interrupt overrun flag;

-- otherwise raise an exception since the specified clock has
-- not been initialized properly.

- - - - - - - -

CMU/SEI-87-TR-29 39

if Clock Array(Clock Ldentifier) /m ADDRZSS-ZERO then
CurrZt CSR. flagoverrun: - FALSE;
Put CSR(CurrentCSR, Clock Array (Clockdentifier));

else
raise Clock_NotInitialized;

end if;

end Reset Overrun Flag;
pragna ININE (Reset Overrun_Flag);

' StartCounting procedure
with KWV Register Definitions; use KWV Register Definitions;

separate (T1l1_ClockManager)

procedure StartCounting (Clock Identifier : in ClockID) is
Current_CSR : W CSR Record : Get CSR(ClockArray(ClockIdentifier));

begin

-- If specified clock's CSR address is non-zero (i.e., the clock exists
a-- nd has been initialized) then start the clock's internal counter;

-- otherwise raise an exception since the specified clock has
-- not been initialized properly.

if ClockAr ray(Clock_Identifier) /- ADDRESSZERO then
if (ClockInfo(Clock_Identifier).Moda - Mode_Two or else

ClockInfo (Clock_Idntifier) . Mode - ModeThree)
then

CurrentCUR.go :- TRUE;
Put CsR (Current_CSR, ClockArray (Clock_Identifier));

else
raise Invalid ClockMode;

end if;
else

raise ClockNotInitialized;
and if;

end StartCounting;
prague INLINE (StartCounting);

S

ReadCounter procedure

with LWVRegisterDefinitions; use KWVRegisterDefinitions;

separate (KWV11_Clock.Manager)

procedure ReadCounter (Clock Identifier in ClockID;,
A.Numer OfTicks : out KWV COUNTER TYPZ) is

Current CSR : KWV CSRRecord :- GetCSR(Clook Array(Clock Identifier));

Device Ticks :W COUNTERTYPE;
for DeviceTicks use at (Clock Array(ClocklIdentifier) + 2);

40 CMU/SEI-87-TR-29

begin

-- If specified clock's CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then simulate an external event in order to
-- get current value of the clock' internal counter written to the

-- BUFFER/PRESET register and then read that value and return it while
-- the clock continues to run; otherwise raise an exception since the
rn specified clock has not been initialized properly.

if Clock_Array(ClockIdentifier) /- ADDRESS ZERO then
U if (ClockInfo(Clok_Identifier).Mode - Mode Two or else

Clock_Info (Clock_Identifier) .Mode - Mode_Three)

then
Current CSR.st2 int enable :- FALSE:
CurrentCSR.maint at2 :- TRUE;

Put_CSR (Current_CR, ClockArray (ClockIdentifier));

loop
Current CSR :- Get CSR(ClockArray(ClockIdentifier));
exit when CurrentCSR.st2 flag;

end loop;

Number Of Ticks :- READ REGSTER(DeviceTicks);
Current_CSR.st2 flag :- FALSE;
PutCSR (CurrentCSR, ClockArray (Clock_Identifier));

else
raise Invalid_ClockMode;

end if;
else

raise ClockNotInitialized;
end if;

end Read_Counter;

StopCounting procedure

with KWVRegister_Definitions; use KW_Register Definitions;

separate (KWV1 _Clock Manager)

procedure StopCounting (Clock_Identifier : in ClockID;
Number_Of_Ticks : out KWV_COUNTERTYPE) is

.. CurrentCSR : KWVCSRRecord :- Get_CSR(ClockArray(ClockIdentifier));

Device Ticks : KWV COUNTER TYPE;
for DviceTicks use at (Clock Array(Clock Identifier) + 2);

begin

-- If specified clock's CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then simulate an external event in order to
-- got current value of the clock' internal counter written to the
-- BUFFER/PRESZT register and then return that value;
-- otherwise raise an exception since the specified clock has
-- not been initialized properly.

- -.

CMU/SE"87-TR-29 41

4 *'*. - *.. - ' % %

W-

if Clock Array(ClockZdmitifier) -ADORZSSERO then
i f (CloakInfo(ClockIdentifiez) mode - ModeTwo or alse

C~c_ noClc_Idnii _oe- o Three)

then
Current_C2 at2_int_enable - rALSE
CurrentCMR. mant_@t2 :a TRUK
PutCSR(Curvent CMR. Clock_ Array (Clock_dentifier));

loop
Current CM :- GetCSR (Clock_-Array (Clock Identifier));
exit when Current_CM ast2_flag;

end loop;

NumaerOfTicke :a READ REGI3?ER(DeviosTicks):
Current CM. go -FALZZ:
CurrentCMR.st2_flag :_ ALSE
Put_-CSI(CurrentCMR, Cl~ck Array(Clock_Identifier));-

else
raise InvalidClock Mode;

end if;
alse

raise Clock Not Initialized:
% end if;

end Stop__Counting;

Interrupts_Enabled function
with KWLVRegisterDefinitions; use KW-VRegister Definitions;

separate (KIVilClockManager)

function InterruptsEnbled (Clock_Idntifier: in ClockID) return BOOLEAN is
currentCSR KWEVCMRecord :- GetCSR(ClockArray (ClockIdentifier));

begin

-- if specified clock's CSR address is non-zero (i.e., the clock exists

,I~. -- and has been initialized) then return a BOOLEAN value Indicating
-- whether or not the clock will generate an interrupt when its internal
-- clock overflows; overflow flag; otherwise raise an exception since
-- the specified clock has not been initialized properly.

if ClockArray (ClockIdentifier) I-ADDRESS_ZURO then
return CurrentCMR.imt ovf;

also
raise ClockNotInitialized;

end if;

0.and IntarruptsEnabled;
praguin INLInE(Interrupts_Enabled);

CurrentMode function
with UNICC3_CUVRIOV;
with KiVRegister Definitions; use KIEVRegister Definitions;

42 CMU/SEI-87-TR-29

04%

separate (MI~lClockManager)

function CurrentMode (ClockIdentifier :in Clock ID) return Clockmode isS CurrentC8R :1W CSRRecord := Get CER (ClockArray (Clockdntifier)):

function Convert It is new UNMCCOVEREON (UNSIGNIED_2, ClockMode);
begin

-- If specified clock's CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then return current clock mode:
-- otherwise raise an exception since the specified clock has
-- not been Initialized properly.

if ClockArray (ClockIdentifier) /- ADDRESSZERO then
return ConvertI (rrentCR.ods);

else
raise ClockNotInitialized;

end if;

end CurrentMode:
pragms INLINE (CurrentMode);

le

CurrentRate function
with UNCHZEXDCONVERIION:
with 1W_RgiterDefinitions; use 1WRegister Definitions:

separate (KWVllClockM anager)

function CurrentRate (Clock_Identifier :in ClockID) return ClockRate is
CurrentCSR :1W_-CSRRecord :- GetCSR (ClockArray (Clock_Identifier)):

function Convert-It is new UNCRE~DCONVERSION(UNSIGNED3, ClockRate):
begin

-- If specified clock's CSR address is non-zero (i.e., the clock exists
-- and has been Initialized) then return current clock rate:
-- otherwise raise en exception since the specified clock has
-- not been Initialized properly.

if Clock_-Array (ClockIdentifier) /- ADDRESSZERO then
return ConvertIt(currentCSR.rate):

also
raise ClockNotInitialized:

end if:

end CurrentRate:
pragma MUINE (Current-Rate):

InterruptPeriod function
with UNCMD_=COVZRSION:
with VAXEL.NSORVIES; use VA=LffSERVZS;

ki with 1W_Register Definitions; use 1W%_Regimter-Definitions:

separate (INVilClockManager)

CMU/SEI-87-TR-29 43

function Interrupt Period (ClockIdentifier :In ClockID) return IWVCOUNTER TYE is
DeviceTicks : MMCOUNTERTyiE;

for DeviceTicks use at (Clock Array (ClockIdentifier) + 2);
begin

----e-i n t al-e)-h e-f-h e cl c
and spcfidclock's CSR address is non-zero (i.e., the clock exists

-- interrupt period; otherwise raise an exception since the specified
clckhs-o been initialized properly.

if Clock_-Array(ClockIdentifier) /- ADDRESS ZZRO then
return READ REGISTUR(DvicaTick.);

raise ClockNtInitialized:
end if;

end Interrupt_Period;
pragma INLINE (Interrupteriod);

InterruptFlagOn function
with 1KV_Register Definitions; use 1KVRegisterDefiitions;

separate (KWV1 1_ClockManager)

function Interrupt Flag__On (ClockIdentifier in ClockID) return BOOLE.AN is
Current CSR :1KVCSRRecord :- GetCSR (ClockArray (ClockIdentifier));

begin

-- If specified clock's CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then return current BOOLEAN value of counter
-- overflow flag; otherwise raise an exception since the specified clock
-- has not been initialized properly.

if Clock_-Array (ClockIdentifier) /m AJDDRESS ZERO then
return CurrentCSR.ovf-flag;

else
raise ClockNotInitialized;

end if;

end Interrupt FIlag_On;
* pragma INLIWE (InterruptFlag_On);

OverrunFlagOn function
with 1W_Register_Dfinitions; use 1KVRegister Definitions;

separate (INVi1_ClockManatger)

function Overrun rlag__On (Clock Identifier :in ClockID) return BOOLEAN is
Current CSR : KVCSRRecord -Get CUR (ClockArray (Clock-Identifier));

begin

-- if specified clock's CSR address is non-zero (i.e., the clock exists

44 CMU/SEI-87-TR-2§

04%

-0 1 V .. N

and has bon initialized) then return current BOOLEAN value of overrun
flag; otherwise raise en exeption s.nce the specified clock

-- has not been initialized properly.

if ClockArray(Clockdentifier) /m ADDRESS_ZRO then
return CurrentCSR. flagovorrun;

else
raise Clock NotInitialized;

end if;

end OverrunFlag_On;
*- pragma INLINE(Ovwerrun Flag_On);

P6

.4

CMU/SEI-87-TR-29 45

V

A

0

0.1

1

46 CMU/SEI-87-TR-29

~ 4
~ ~'V~' V

Appendix B: Examples of KWV11-C Interface

B.a. Mode 0 Operation

with SYSTEM; use SYSTEM;
"' with TEXT_10; use TEXTIO;

V,. with CALENDAR; use CALENDAR;
with KWVllClockManager; use KWVll_ClockManager;
with VAXELN SERVICES;
with CONDITIONHANDLING;
with UNCHECKD CONVERSION;

- with TimerInterrupt_Routine;

procedure ModeOTest is
Clock ame constant STRING : "KWVI11";
Log_Fjile Name constant STRING :- "25::ps:[borger]modeO test.log";
LogFile FILE TYPE;
My_ClockID Clock ID;
My ClockDevice DEVICE TYPE;
CSR ADDRESS;
Ticks KWVCOUNTER TYPE -KWV COUNTERTYPE (100);
ReturnCoda CONDVALUETYPE;
ResultCod INTE-GER;

subtype DateTime _Type is VAXELNSERVICES. DateTime _Type;

function FutureTime (TimeInterval : Day_Duration) return Date TimeType is
function TimeToDateTime is new UNCECKEDCONVERSION(Time, DateTime_Type);

begin
return Time To DateTime(Clock + TimeInterval);

end FutureTime;

. ,begin

-- Open external log file on host

Open (Log_ile, OutFile, LogileName);
" SetOutput(LogFile);

r, ' -- Initialize the clock to operate in mode zero at a 1MHZ rate.
%- - The Interrupt Service Routine is "TimerInterruptRoutine".
!0

Initialize(ClockName -> ClockName,
ClockIdentifier U> My ClockID,

Mode -> ModeZero,
Rate -> RatelMHZ,

- ", Vector Number > 1,
Service _ Routine -> Timer_InterruptRoutine'ADDRESS,

.9" -j CSR-Address U> CSR,
DeviceObject -> My Clock-Device);

-- Enable clock overflow signals (interrupts)

Enable Interrupts(MNy ClockID);

CMU/SEI-87-TR-29 47

0o

%~ %.

-- Set interrupt time period to be 100 ticks (microseconds)

SetInterruptPeriod(My ClockID, Ticks);

for Index in 1..100
loop

S-- tart qn'rating the interrupts (in this came, only one interrupt
s-- ince the clock is operating in mode 0).

GenerateInterrupts (MyClock ID);

-- Wait for a signal device (kernel service) call from the
-- Timer Interrupt Routine. Timeout after 5 seconds.

VAXELNSERVICES.W.ITANY (Status -> ReturnCode,
Result -> ResultCode,
Time -> Future_Time(5.0),
Valul -> MyClock_Device);

' -- Determine if signal device (kernel service) call was made, or alse
--- -- we timed out after 5 seconds.

if CONDITION HANDLING.Success(ReturnCode) and then ResultCode = 1 then
--". Put Line ("Dovice Signal received.");
- else

PutLine("WAIT ANY timed out.");
*" end if;

end loop;

-- Stop clock operation

ReInitialize(MyClockID, Mode-Zero, Stop);

-- Close external log file on host

Close (Log File);

exception
when Initialization Error ->
Put_ Line("Error during clock initialization.");

d- Close(Log_yile);

when ClockNotInitialized ->
P Put_Line("Invalid clock identifier.");
% Close(Log_File);

when others ->
" .' Close (LoqFile);:

end ModeO Test;

48 CMU/SEI-87-TR-29

.*A6q=V M

B.b. Mode 1 Operation
with SYSTEM; use SYSTEM;
with TEXT_10; use TEXT_10;

With CALLENDAR; use CALENDAR;
with INV11_Clock Manager; use IWVilClockManager;
with VAXELNSERVICES;
with CONDITIONHANDLING;
with UNCHECKED-CONVERSION;
with TimerInterrupt_ Rou tine;

procedure ModelTest is
Clock_-Name :constant STRING :-"KWVl1";
LogFileName :constant STRING :-"25::ps:[borgerlmodel-testlog";
LogFile :FILE_-TYPE;
My- ClockID :Clock ID;
My-ClockDevice :DEVICETYPE;
CSR :ADDRES~S;
Ticks :KWV COUNTER TYPE :- KWVCOUNTERTYPE (10_000);
ReturnCode :CONDVALUETYPE;
ResultCoda xiNEER;

subtype DateTime_-Type is VAXELNSERVICES. DateTime_Type;

function FutureTime (TimeInterval :Day_ Duration) return DateTime Type is
function TizmToDateTime is new UNCHECKDCONVERSION (Time. DateTime_ Type);

begin
return TimeToDateTime (Clock + TimeInterval);

end rutureTim;-

begin

-- Open external log file on host

Open (Log File. OutFile, Log_FileName);
Set-Output (Log File);

-- Initialize the clock to operate in mode zero at a 1MFIZ rate.
-- The Interrupt Service Routine is "TimrInterrupt Rutine".

Initialize (ClockName ->ClockName,
N' Clock Identifier ->MyClock ID,

Mode .>ModeOne,

Rate ->RatelMZ,
VectorNumber >1,

ServiceRoutine ->TimrInterrupt_ Routine 'ADDRESS,
CSIAddress ->CSR,

Device Object ->My-Clock Devic.)

-- Enable clock overflow signals (interrupts)

EnableInterrupts (My_lockID);

-- Set Interrupt time period to be 10_000 ticks (microseconds)

SetInterrupt Period (MyClock ID. Ticks);

CMU/SEI-87-TR-29 4

1161CW S

- - - - - -

-- Start generating the interrupts (in this case, repeatedly
-- since the clock is operating in mode 1).

Generate Interrupts (MyClockID);

---- ----

A -- Handle 100 interrupts
----- --

for Index in 1.-100
loop

-- Wait for a signal device (kernel service) call from the
-- Timer Interrupt Routine. Timeout after 2 seconds.

V70MW_8SEVICS.WAITANY (Status -> ReturnCode,
Result => ResultCode,
Time -> utureTime (2.0),
Valuel ->My_ClockDevice)

-Reaset interrupt flag to allow more interrupts to be generated

ResetInter-rupt _Flag (My__Clock ID);

%- we timed out after 2 second.

- u--e--D-ceSina-ecivd.-
if CONDITION HANDLING. Success (Return Code) and then ResultCode 1 then
else ie(Dvc Sga ecie.)
auie(lsoYtmd u.)

end if;

erd loop;

-- Stop clock operation

Re_-Initializ(Ny_ Clock-ID, ModeZero, Stop);

-- Close external log file on host

* Close (Log File);

exception
- when InitializationError -

PutLine ("Error during clock initialization.");
Close(Log File);

@9 when Clock Not Initialized -

PutLine ("Invalid clock identifier.");

Close (Log File);

when others -

4.. Close (Log Vile);

end Model Test;

50 CMU/SEI-87-TR-29

B.c. Mode 2 Operation
with SYSTEM; use SYSTEM;
with TEXT_10; use TEXT_10;oc aae
with KWI7 _ClockManager; use KWVh1 Clokmngr

procedure Mode2-Read Test is
ClockName :constant STRING :-"KWh,';
LogVileNamei constant STRING :-"25::pz:[borerjmode2_read testlog';

- Log File FILETYPE;
My_ ClockId :ClockID;

-My_ ClockDevice DEVICETYPE;
CSR :ADDRESS5;
Ticks. KWVCOUNTER TYPE;

'A begin
- - - - - -

-- Open external log file on host

~' ~ Open (Logfile, OutFile, Log file Name);
Set-Output (Li;g File);

-- Initialize the clock to operate in mode two at a lMZ rate

Initialize (ClockName ->ClockName,

ClockIdenifier ->My_CPlock_-ID,

Modes- ModeTwo,
Rate ->RatelMIZ,

VectorNumber m>1,
Service Routine m>ADDRESSZERO,

CSRAddress ->CSR,

Device_Object ->My_2Clock Device)

-- Repeatedly meazure overhead time associated with starting and
-- stopping the clock's counting; record this overhead time in the log file

St art Counting (My Clock ID);
for Index in 1..500
loop

- ReadCounter(My_CPlockID, Ticks);
Put (INTEGER' IMAGE (INTEGER (Ticks)));

* if (Index rem 10) - 0 then
New line;

end if;
end loop;

-Stop clock operation

Re Initialize (My_ClockID, ModeZero, Stop);

---- ----
p -- Close exteznal log file cn host

CloseCLo_ile);

exception

CMU/SEI-87-TR-29 51
p r

61

when InitializationKrzor U

Put Line("Zrzor Zaring clock initialization.");
Clse (Loq File);

when ClockNotInitialized -

Put Line ("Invalid clock identifier."*);
Close (Log File):

* when others-

end Mode2 ReadTeat;

52CU/E-7-R2

B.d. Mode 3 Operation
with SYSTEM; use SYSTEM;
with TEXT 10; use TEXT_10;
with RNV12.ClockMana::r; use RWV11_Clock Manager;

-,procedure oeTsti
ClockName constant STRING -"KWVl1":-
Loog ni.e Name constant STRING :-"25::ps:[borge-]mod3testlog";
Log File rILETYPE;
MP y_ Clock Id ClockID;

* MClckDevice DEVICETYPE;
CSR ADDRESS;

* Ticks KWVCODNTER TYPE;

begin

-- Open external log file on host

* .- Open (Lo_ile, OutFile, Log File Name);
Set-Output (Lo~g File)

-- Initialize the clock to operate in mode three at a 1MHZ rate

*Initialize (ClockName -> ClockName,
-. ClockIdentifier => My_2Clock-ID,

Mode ->Mode-Three,

Rate ->RatelMHZ,
VectorNumber ->1,

ServiceRoutine => ADDRSS_ ZERO,
CSR_-Address -> CSR,

Device Object => My_ Clock Device)

* - -- Repeatedly measure overhead time associated with starting and
-- stopping the clock's counting; record this overhead time in the log file

for Index in 1. .500
loop

StartCounting (My_ClockID);
StopCounting(My__ClockID, Ticks);
Put (INTEGER' IMAGE (INTE-MR (Ticks)));

end;

if (Index rem 10) - 0 then
* New line;

- end if;
end loop;

-Stop clock operation

Re Initializ(My_ ClockID, Mode-Zero, Stop);

-- Close externial log file on host

Close(laqVile);

CMU/SEI-87-TR-29 53

VK * k&

when Iittalilatiotiznor.)-- Pu tinea("Zrror during clock initialization. ") ;

Close (Log File);

when Clock NotInitialized ->
Put Line "nvalid clock identifier.*,);
Close (Lo*g File);

when others =>
Close (Iogile);

end Mode3Test;

5;.

Is.

-

54 CMU/SEI-87-TR-29

Appendix C: Software Measurement Techniques Using the
KWV1 1 -C Interface

C.a. Technique #1
with SYSTEM; use SYSTEM;

pwith TMCT_10; use TEXT_10;
*with KWhl Clock_-Manager; use KWhl _ClckManager;

with vaXKELiSERViCES;
with CONDITIONHANDLING;
with TimrInterruptRoutine;

procedure ModelWait_-Time is
ClockNam : constant STRING :- V11";
My_lockID :ClockID;
My_lock7_Device DEVICE TYPE;
CSR :ADDRESS;
Ticks :KWVCOUNTERTYPE :- 1WCOUNTER_TYPE(5000);

4 begin

-- Initialize the clock to operate in mode zero at a IMHLZ rate.
-- The Interrupt Service Routine .. "TimrInterruptRoutine".

Initialize (ClockName ->Clock Name,
ClockIdntifier -> y_ClockID,

Mode M> odeZero,
Rate ->RatelMHZ,

VectorNumber ->1,
Service_-Routine - Timr_-Interrupt_ Routin'ADDRESS,

CSRAddress m> CSR,
DeviceObject => My_Clock_Device)

-- Loop until the clock's overrun flag is not which will indicate thatp -- software is not keeping up with the interrupt rate. This will give
-- a rough measure of the elapsed time from the time of the interrupt

4 6 until the application code is re-scheduled and executed.

loop

#3 -- Re-Initialize clock

RelInitialize(y_Clock_ID, Mode One, RatelMHZ);

-- Enable clock overflow signals (interrupts)

Enable Interrupts (My_ ClockID);

-- Decrease number of ticks counted to generate an interrupt

Ticks :- 1WV COUTE1R TYP (INTGER(Ticks) - 1);

CMU/SEI-87.TR-29 5

Program clock to generate interrupt every Ticks microseconds

SetInterrupt _Period(My ClockID, Ticks);

-- Start generating the interrupts (in this case, repeatedly
since the clock is operating in mode 1).

Generate Interrupts (MyClockID):

-- Wait for a signal device (kernel service) call from the
-- Timer Interrupt Routine.

VAX3LN_SZRVICES.WRIT_ANY (Valuel -> MyClockDevice);

-- Reset interrupt flag to allow more interrupts to be generated

* ResetInterruptFlag(My_ClockID);

--%' exit when OverrunFlag On (MyClockID);

end loop;

Put_Line (INTEGER' IMAGE (INTEGER (Ticks)));

-- Stop clock operation

ReInitialize(MyClockID, Mods_Zero, Stop);

exception
when Initialization-Error ->

PutLine("Error during clock initialization.");

when ClockNotInitialized ->
PutLine("Invalid clock identifier.");

when others ->
PutLine("Unexpected exception raised.");

nd ModelWaitTime;

56 CMU/SEI-87-TR-29

,-,...,.,, :-. . ..-.-. .- .._.._...- .._. %._: .,

g'IN J 6 f-6'.APW
-A.

C.b. Technique #2
with SYSTEM; use SYSTEM;
with TZXT_10; use TEXT 10;

wit KI71_Clock Manage; use KW11Clockumnage;

procedure __e-Wi - imi
ClockName oosatSTRING :- "INVhl";

*My_ Clock id ClockID;
My Clc-Device DEVICETYPE;

CSR .ADDRESS;

Ticks KWCOUNTERTYPE;

begin

-- Initialize the clock to operate in mode two at a 1MOZ ate

4 Initialize (ClockName ->Clock Name,
-A -ClockIdentify m>MyClockID,

Mode => Mode Two,
Rate -> Ratehmaz,

VectorNumber => 1.
ServiceRoutine -> Time Interrupt Routine' ADDRESS,

CSR_-Address => CSR,
DeviceObject ->My__Clock Device)

-- Enable counter overflow interrupts

Enable Interrupts (My ClockID);

-- Measure overhead time associated with handling an interrupt and
-- continuing application code after a WA.ITANY

StatCounting (My_lockID);
VAFELNSERVICES. WAITANY (My C-lockDevice);

Stop Counting (My_CPlockID, Ticks);
Put (INTECZ6R' IMA.E (INTECGER (Ticks)));

-Stop clock operation

ReInitializ(btrClockID, ModeZoo, Stop);

end Mod*2_WaitTime:

CMU/SEI-87-TR-29 5

A,

A'

*.1

44

'PP.

V

Pt,

P.

.7

0.
'P1

N',

'PP.

58 CMU/SEI-87TR-29

0

- ,~. * -~ - ~ 'V'*''*t'P..~*.*~ P.-

% %, --% . ' . r, V.r

;.~~~ ~~~~
:-

. ..-.. " --
V --

UNLIMITED/ UNCLASSIFIED

SCURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE7 2& SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
b OECLASSIFICATION/DOWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED

N/A
j PERFCRMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-87-TR-29 ESD-TR-87-188

6. NAME OF PERFORMING ORGANIZATION 6b, OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

6c. ADDRESS (CII. Slate and ZIP Code, 7b. ADDRESS (City. State and ZIP Coade

CARNEGIE-MELLON UNIVERSITY ESD/XRS1

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE
.AN~lOnm mA m17 I

&a, NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION It applicable)

SEI JOINT PROGRAM OFFICE ESD/XRSI F1962885C0003

S Sc ADDRESS (City. Stat and ZIP Codel 10. SOURCE OF FUNDING NOS

CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT ASK WORK UNIT

PITTSBURGH, PA 15213 ELEMENT NO. NO. NO NO

11 63752F N/A N/A N/A
I% I TITLE (Incdude; Security Clamaiteatlon11

VAX Experimentation: Programming a Real-Tim Clock and Irerruot Handling U.inZ VAX

P 12. PERSONAL AUTHOR(SI Ada 1.1
Mark W. Borger

134. TYPE OF REPORT i 13b, TIME COVERED 14. DATE OF REPORT (Y.. Ma., Dayl AGECOUNT

FINATli FROM TO I PptPl r 1987

16. SUPPLEMENTARY NOTATION

P" 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse I necessary and identify by biock number)

FIELD IGROUP SUB. GR. Ada VAXELN kernel
interrupt handling

19. I real-time clock interface

1. ABSTRACT iContinue on rvverse if necesary and identify by block number,.

This report describes the results of implementing an interrupt handler totally in Ada for
a MicrovAXII/ VAXELN 2.3 target system, the VAXELN 1.1 Ada compiler, and a KWV11-C

programmable real-time clock. It provides an overview of VAXELN interrupt handlers and

the operation of the real-time clock;discusses and demonstrates the use of VAXELN

kernel services to establish a link between the clock interrupt and the starting
address of an interrupt service routine; presents an Ada package of interfaces to the
KWVI1-C device; provides Ada source code examples demonstrating the use of this package;and presents relevant observations, recommendations, and measurement results.

20. DISTRISUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED R3 SAME AS RPT C] OTIC USERS UNCLASSIFIED, UNLIMITED DISTRIBUTION

22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

KARL H. SHINGLER finteude Ara Code,

1 412 268-7630 SEI JPO

" DO FORM 1473.83 APR EDITION OF I JAN 73 IS OBSOLETE.

SECURITY CLASSIF ICATION OF THIS PAGE

% - ,

, .4

* p'.

C.-

DilCC

